INORGANIC COMPOUNDS

Acta Cryst. (1996). C52, 2121-2123

The Hydrogen-Bonding System in Deuterated Copper Fluorosilicate Tetrahydrate: a Neutron Diffraction Study

Gérard Chevrier and Arsène Goukassov
Laboratoire Léon Brillouin, CE Saclay, 91191 Gif-sur-Yvette
CEDEX, France. E-mail: chevrier@bali.saclay.cea.fr

(Received 16 January 1996; accepted 19 March 1996)

Abstract

The structure of copper hexafluorosilicate-deuterium oxide (1/4), $\mathrm{CuSiF}_{6} \cdot 4 \mathrm{D}_{2} \mathrm{O}$, has been established by single-crystal neutron diffraction in order to describe the hydrogen-bonding system. It crystallizes in the monoclinic system, space group $P 2_{1} / c$. The structure comprises SiF_{6} and $\mathrm{Cu}\left(\mathrm{D}_{2} \mathrm{O}\right)_{4} \mathrm{~F}_{2}$ octahedra. A common F atom allows the formation of chains along the [101] direction; these chains are linked by hydrogen bonds.

Comment

Large crystals of the title compound with an estimated deuteration rate of 0.75 to 0.85 were prepared according to a technique described by Chevrier \& SaintJames (1990). In spite of the fact that the method was the same as used to obtain deuterated hexahydrates such as $\mathrm{CoSiF}_{6} .6 \mathrm{D}_{2} \mathrm{O}$ (Chevrier \& Saint-James, 1990), $\mathrm{MnSiF}_{6} .6 \mathrm{D}_{2} \mathrm{O}$ (Chevrier, 1991), $\mathrm{MgSiF}_{6} . \mathrm{6D}_{2} \mathrm{O}$ (Chevrier, 1992) and $\mathrm{Mg}_{1-x} \mathrm{Fe}_{x} \mathrm{SiF}_{6} .6 \mathrm{D}_{2} \mathrm{O}$ (Chevrier, 1994), we arrived at the lower hydrate $\mathrm{CuSiF}_{6} \cdot 4 \mathrm{D}_{2} \mathrm{O}$. The structure of the hydrogenated compound has been studied previously by X-ray diffraction using a Weissenberg camera (Clark, Fleming \& Lynton, 1969), but the positional parameters of the H atoms were not obtained ($R=0.083$). Therefore, we have used neutron diffraction to determine the position of all the atoms, especially the D atoms, and to understand the hydrogen bonding in all its details.
The final atomic coordinates of the non-H/D atoms do not differ fundamentally from the X-ray model (Clark, Fleming \& Lynton, 1969), but the refinement of the D atoms leads to small corrections in their positions, of which the most important are $z(\mathrm{~F} 1)=0.4529(6)$, $z(\mathrm{O} 1)=-0.1203(7)$ and $z(\mathrm{O} 2)=0.0790(7)$ (Table 1) compared to $0.4565(7),-0.1224$ (8) and $0.0815(9)$, respectively, for the X-ray model.
In contrast to the hexahydrates, each Cu atom in the title compound is surrounded by only four $\mathrm{D}_{2} \mathrm{O}$ molecules and two F atoms complete the octahedron.

This octahedron is very elongated, as seen from Table 2: the two equal $\mathrm{Cu}-\mathrm{O}$ bond lengths [1.951 (8) and 1.952 (7) \AA] should be compared with the $\mathrm{Cu}-\mathrm{F} 3$ bond length $(2.320 \AA)$. The octahedron is also characterized by the $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$ plane, which is almost perpendicular to the ($10 \overline{1}$) plane [$\left.93.0(1)^{\circ}\right]$.
The Si atom is coordinated by six fluorine atoms in the form of a far more regular octahedron: two $\mathrm{Si}-\mathrm{F}$ bond lengths $[1.693$ (6) and 1.693 (7) \AA] should be compared with the third $\mathrm{Si}-\mathrm{F} 3$ bond length [$1.658(10) \mathrm{A}$] and with the average value obtained in the $M \mathrm{SiF}_{6} .6 \mathrm{D}_{2} \mathrm{O}$ compounds ($1.680 \AA$; Chevrier, 1992). Furthermore, the two equal $\mathrm{Si}-\mathrm{F}$ bonds also define a plane perpendicular to (101) [89.1 (1) ${ }^{\circ}$. The two types of octahedra are linked by a common F atom [the $\mathrm{Cu}-\mathrm{F} 3-\mathrm{Si}$ angle is $153(4)^{\circ}$ and the angle between the planes $\mathrm{Ol}-\mathrm{Cu}-$ O 2 and $\mathrm{F} 1-\mathrm{Si}-\mathrm{F} 2$ is $26.1(3)^{\circ}$] and form chains parallel to the [101] direction. It is also noteworthy that F3 lies almost in the ($\overline{1} 01$) plane defined by the Cu atoms [0.029 (4) \AA from the plane].
The conformations of the water molecules W1 $[\mathrm{O} 1-\mathrm{D} 11=0.962(8), \mathrm{O} 1-\mathrm{D} 12=0.953(8) \AA$ and $\left.\mathrm{D} 11-\mathrm{O} 1-\mathrm{D} 12=105.5(13)^{\circ}\right]$ and $W 2[\mathrm{O} 2-\mathrm{D} 21=$

Fig. 1. A chain of $\mathrm{CuF}_{2}\left(\mathrm{D}_{2} \mathrm{O}\right)_{4}$ and SiF_{6} octahedra along the [101] axis in $\mathrm{CuSiF}_{6} .4 \mathrm{D}_{2} \mathrm{O}$ showing 90% probability displacement ellipsoids.
$0.952(10), \mathrm{O} 2-\mathrm{D} 22=0.957(8) \AA$ and $\mathrm{D} 21-\mathrm{O} 2-\mathrm{D} 22$ $=107.4(15)^{\circ}$] are perfectly defined, as shown Tables 2 and 3, and the molecular planes form an angle of $56.5(8)^{\circ}$. Furthermore, the $W 1$ molecular plane contains O 2 [maximum deviation from the mean least-squares plane: 0.012 (5) \AA for $\mathrm{O} 1 ; \chi^{2}=9$].

The structure contains hydrogen bonds from $W 1$ and W2 of one chain to the F atoms of six adjacent chains (Fig. 2). These define the two planes O1, D11, D12, $\mathrm{F} 2^{\mathrm{iii}}, \mathrm{F} 2^{\text {iv }}$ [maximum deviation from the mean leastsquares plane: $-0.040(5) \AA$ for D11; $\chi^{2}=98$] and $\mathrm{O} 2, \mathrm{D} 21, \mathrm{D} 22, \mathrm{~F} 1^{\mathrm{v}}, \mathrm{F} 1^{\mathrm{vi}}$ [maximum deviation from the mean least-squares plane: -0.029 (5) \AA for $D 22$; $\chi^{2}=48$] inclined at an angle of $54.8(2)^{\circ}$. The hydrogen bonds are probably of the bent type (Table 3) and the distances between D and F lie between 1.720 (9) and 1.787 (9) \AA. This means they are stronger than the bonds in the fluorosilicate hexahydrates [the average value from Chevrier \& Saint-James (1990) and Chevrier (1991, 1992, 1994) is $1.838 \AA$], but are of the same order as the average value found in all $\mathrm{H} \cdots \mathrm{F}$ bonds $(1.716 \AA$; Chiari \& Ferraris, 1982).

Fig. 2. The hydrogen-bonding scheme showing the interactions between the water molecules of one chain and the F-atom octahedra within other chains (90% probability displacement ellipsoids).

Experimental

The title compound was prepared according to the procedure described by Chevrier \& Saint-James (1990) and mounted in an argon-filled aluminium container.

Crystal data

$\mathrm{CuSiF}_{6} .4 \mathrm{D}_{2} \mathrm{O}$
Neutron radiation
$M_{r}=285.7$

Monoclinic
$P 2_{1} / c$
$a=5.33(2) \AA$
$b=9.60$ (5) \AA
$c=7.18(5) \AA$
$\beta=105.16(1)^{\circ}$
$V=354(8) \AA^{3}$
$Z=2$
$D_{x}=2.679 \mathrm{Mg} \mathrm{m}^{-3}$
Cell parameters from 17 reflections
$\theta=12.5-36.5^{\circ}$
$\mu=0.0683 \mathrm{~mm}^{-1}$ (estimated)
$T=296 \mathrm{~K}$
Prism
$4.00 \times 3.50 \times 3.00 \mathrm{~mm}$
Blue
D_{m} not measured

Data collection

Four-circle 6T2 diffractometer at the Orphee reactor
Unique set between 45 and $120^{\circ} 2 \theta . \omega$ scans between $2 \theta=2$ and $45^{\circ}, \omega-\theta$ scans between $2 \theta=45$ and 60°, and $\omega-2 \theta$ scans between $2 \theta=60$ and 120° Absorption correction: none
759 measured reflections
571 independent reflections
433 observed reflections
$\left[F^{2}>2.5 \sigma\left(F^{2}\right)\right]$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=60.0^{\circ}$
$h=-4 \rightarrow 6$
$k=-10 \rightarrow 10$
$l=-8 \rightarrow 2$
2 standard reflections frequency: 120 min intensity decay: $<0.5 \%$

Refinement

Refinement on F^{2}
$R=0.0647$
$w R=0.0465$
$S=5.713$
433 reflections
101 parameters
$w=1 / \sigma^{2}\left(F^{2}\right)$
$(\Delta / \sigma)_{\max }=0.00007$
$\Delta \rho_{\text {max }}=0.65 \mathrm{fm} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.75 \mathrm{fm} \AA^{-3}$
Extinction correction: type II anisotropic (Coppens \& Hamilton, 1970)
Extinction coefficient: $G_{\mathrm{eq}}=0.113$ (5)
Atomic scattering factors from Delapalme (1985)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \mathbf{a}_{j}
$$

	x	y	z	$U_{\text {eq }}$
Cu	0	0	0	0.0176 (9)
Si	1/2	0	1/2	0.0083 (13)
F1	0.7311 (7)	0.1050 (4)	0.4529 (6)	0.0274 (11)
F2	0.3893 (8)	0.1334 (4)	0.6110 (5)	0.0255 (10)
F3	0.2981 (7)	0.0471 (4)	0.2921 (5)	0.0305 (11)
O1	0.1260 (8)	0.1582 (5)	-0.1203 (7)	0.0257 (12)
02	-0.2393 (7)	0.1269 (5)	0.0790 (7)	0.0236 (12)
D11	0.2204 (10)	0.1406 (5)	-0.2153 (8)	0.0361 (15)
D12	0.2198 (11)	0.2301 (6)	-0.0398 (8)	0.0414 (17)
D21	-0.2500 (10)	0.1226 (5)	0.2092 (10)	0.0364 (15)
D22	-0.2427 (10)	0.2232 (5)	0.0437 (7)	0.0336 (16)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Cu}-\mathrm{Ol}$	1.951 (8)	$\mathrm{Si}-\mathrm{F} 3$	1.658 (10)
$\mathrm{Cu}-\mathrm{O} 2$	1.952 (7)	O1-D11	0.962 (8)
$\mathrm{Cu}-\mathrm{F} 3$	2.320 (13)	$\mathrm{Ol}-\mathrm{D} 12$	0.953 (8)
$\mathrm{Si}-\mathrm{Fl}$	1.693 (6)	O2-D21	0.952 (10)
$\mathrm{Si}-\mathrm{F} 2$	1.693 (7)	O2-D22	0.957 (8)
$\mathrm{O1}-\mathrm{Cu}-\mathrm{O} 2$	88.3 (5)	F1-Si-F3	89.6 (6)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{O2}^{\text {1 }}$	91.7 (7)	$\mathrm{Fl}-\mathrm{Si}-\mathrm{F}^{\text {ii }}$	90.4 (7)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{F} 3$	90.8 (8)	F2-Si-F3	89.6 (8)
$\mathrm{OI}-\mathrm{Cu}-\mathrm{F}^{\text {i }}$	89.2 (6)	$\mathrm{F} 2-\mathrm{Si}-\mathrm{F} 3^{\text {ii }}$	90.4 (6)

$\mathrm{O} 2-\mathrm{Cu}-\mathrm{F} 3$	$87.8(6)$	$\mathrm{D} 11-\mathrm{O} 1-\mathrm{D} 12$	$105.5(13)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{F} 3^{\mathrm{i}}$	$92.2(8)$	$\mathrm{D} 21-\mathrm{O} 2-\mathrm{D} 22$	$107.4(15)$
$\mathrm{F} 1-\mathrm{Si}-\mathrm{F} 2$	$90.3(6)$	$\mathrm{Cu}-\mathrm{F} 3-\mathrm{Si}$	$153(4)$
$\mathrm{F} 1-\mathrm{Si}-\mathrm{F}^{\mathrm{ii}}$	$89.7(7)$		

Symmetry codes: (i) $-x,-y,-z$; (ii) $1-x,-y, 1-z$.

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H...A	D. . A	D-H... A
O1-D11...F2 ${ }^{1}$	0.962 (8)	1.720 (9)	2.676 (12)	172.2 (6)
O1-D12 \cdot F2i	0.953 (8)	1.787 (9)	2.740 (12)	178.8 (6)
O2-D21. . F1iii	0.952 (10)	1.786 (14)	2.737 (18)	177.0 (6)
O2-D22...F1 ${ }^{\text {iv }}$	0.957 (8)	1.764 (10)	2.718 (14)	173.7 (5)

Symmetry codes: (i) $x, y, z-1$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $x-1, y, z$; (iv) $x-1, \frac{1}{2}-y, z-\frac{1}{2}$.

The rate of deuteration of the crystals was obtained from the occupation parameters of the D-atom sites, which were constrained to the same value: we obtained 0.749 (9), which leads to a deuteration rate of 0.839 (3). From the coordinates obtained by Clark, Fleming \& Lynton (1969) and with the D atoms located from a difference synthesis, the structure was refined by the full-matrix least-squares method based on F^{2}. Using a type II anisotropic extinction correction (Coppens \& Hamilton, 1970), the coefficients $z_{11}, z_{22}, z_{33}, z_{23}, z_{13}$ and z_{12} $\left(z_{i j}=W_{i j}^{\prime} \times 10^{-4}\right)$ obtained were $0.0063(9), 0.0070(11)$, 0.0201 (41), $-0.0057(15),-0.0010$ (9) and -0.0002 (5), respectively, which leads to values of $0.230,0.187$ and $0.096 \mu \mathrm{~m}$ for the principal axes of the ellipsoid of the average crystallite shape.

The computer programs used were SHELXL93 (Sheldrick, 1993) and ORXFLS4 (Busing, Martin, Levy, Brown, Ellison, Hamilton, Ibers, Johnson \& Thiessen, 1977) on PC and C1-XP computers.

We are very grateful to A. Forget and D. Colson for the preparation of the crystals.

[^0]
References

Busing, W. R., Martin, K. O., Levy, H. A., Brown, G. M., Ellison, R. D., Hamilton, W. C., Ibers, J. A., Johnson, C. K. \& Thiessen, W. E. (1977). ORXFLS4. Crystallographic Structure-Factor LeastSquares Program. Oak Ridge National Laboratory, Tennessee 37830, USA.
Chevrier, G. (1991). Acta Cryst. B47, 224-228.
Chevrier, G. (1992). J. Solid State Chem. 99, 276-282.
Chevrier, G. (1994). J. Solid State Chem. 111, 322-329.
Chevrier, G. \& Saint-James, R. (1990). Acta Cryst. C46, 186-189.
Chiari, G. \& Ferraris, G. (1982). Acta Cryst. B38, 2331-2341.
Clark, M. J. R., Fleming, J. E. \& Lynton, H. (1969). Can. J. Chem. 47, 3859-3861.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Delapalme, A. (1985). Propriétés des éléments pour la diffusion des neutrons. Internal Report DPhG.SDN/85/, LLB-CENS, France.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 2123-2125
$\mathbf{L a}_{3}\left(\mathbf{S i}_{2} \mathbf{O}_{7}\right) \mathbf{C l}_{3}$

Jiu-Tong Chen,* Guo-Cong Guo, Jin-Shun Huang and Qian-Er Zhang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

(Received 13 May 1994; accepted 1 November 1995)

Abstract

The crystal structure of trilanthanum trichloride pyrosilicate, $\mathrm{La}_{3}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{3}$, has been determined. The main building units are $\mathrm{La}(1) \mathrm{Cl}_{4} \mathrm{O}_{5}, \mathrm{La}(2) \mathrm{Cl}_{5} \mathrm{O}_{5}$ and $\mathrm{La}(3) \mathrm{Cl}_{3} \mathrm{O}_{6}$ polyhedra, and $\mathrm{Si}_{2} \mathrm{O}_{7}$ pyrosilicate groups.

Comment

The structures of the lanthanum chloride silicates $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right)_{2} \mathrm{Cl}$ (Gravereau, Es-Sakhi \& Fouassier, 1988) and $\mathrm{La}_{3}\left(\mathrm{SiO}_{4}\right) \mathrm{Cl}_{5}$ (Gravereau, Es-Sakhi \& Fouassier, 1989) have been determined previously. These compounds show interesting luminescent properties.

Fig. 1. The crystal structure of $\mathrm{La}_{3}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right) \mathrm{Cl}_{3}$ with ellipsoids at the 50% probability level.

[^0]: Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: BR1141). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

